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1. Introduction

Small-x resummations in QCD have been extensively investigated in the past years in or-

der to improve the fixed order perturbative description of high-energy hard processes in

the small-x regime, where higher order perturbative corrections grow rapidly due to loga-

rithmically enhanced contributions ∼ (αs log 1/x)n. Knowledge of the precise relationship

– 1 –



J
H
E
P
0
4
(
2
0
0
8
)
1
0
3

between the fixed order approach — based on the collinear factorization formula and the

DGLAP equation [2] — and the small-x resummed ones — based on the high-energy fac-

torization formula [3] and the BFKL equation [4] — is of course needed for a unified picture

of small-x physics, e.g., to provide quantitatively accurate predictions in the small-x region,

which will be explored by next-generation colliders.

A major aspect of this relationship is the issue of the factorization scheme employed

to define parton densities and coefficient functions. Fixed order perturbative calculations

mostly use the (modified) minimal subtraction (MS) scheme in the context of dimen-

sional regularization. On the other hand, small-x resummed approaches — being based on

k-factorization [3] which involves off-shell intermediate particles with non-vanishing trans-

verse momentum k — are naturally defined in the so-called Q0-scheme [5], where infra-red

(IR) singularities are regularized by an off-shell probe whose non-vanishing virtuality Q2
0

plays the role of an IR cutoff.

The basic relations for the MS ↔ Q0 scheme change of anomalous dimensions and

coefficient functions were obtained some time ago [6, 7] at relative leading-log x (LLx) or-

der, then improved to include next-to-leading-log x (NLx) running coupling corrections [8]

and recently extended by M.C. and myself at full NLx level [1]. The main tool of our

analysis [1] was the generalization to 4 + 2ε dimensions of the γ-representation of the

gluon density — a Mellin representation of the BFKL solution in which γ is conjugate

to t ≡ log(k2/µ2). While for ε = 0 the running-coupling BFKL equation is a differential

equation in γ, for ε 6= 0 it becomes a finite-difference equation, whose solution, however, is

not unambiguously determined and has been computed by using sometimes rather formal

manipulations. Despite the sensible physical meaning of the procedure and of its results,

from a mathematical point of view some steps of our method are not fully proven. It is

therefore desirable to have at least an explicit example that could confirm our method of

solution of the finite-difference equation, especially in view of its application to compute

the anomalous dimensions at full NLx accuracy.

The purpose of the present work is to devise a non-trivial, physically motivated and

solvable model which: 1) by providing explicit solutions, illustrates the main qualitative

features of the real QCD case; 2) can clarify the less understood aspects of the procedure

developed in [1] and verify the correctness of its results. The model I am going to present

is a generalization to arbitrary D = 4+2ε space-time dimensions of the collinear model [9]

used in the past to study the interplay between perturbative and non-perturbative QCD

dynamics at high energies. Starting from the formulation of the LLx BFKL equation in D

dimensions, only the collinearly enhanced (k ≫ k′ and k ≪ k′) contributions of the integral

kernel K(k,k′) are kept. Despite its poor phenomenological accuracy, this model contains

most of the qualitative features of the real theory: it is symmetric in the gluon exchange

k ↔ k′, it generates collinear singularities in the ε → 0 limit, it correctly describes the

leading-twist LLx behaviour of the gluon density, it includes the running of the coupling.

Most importantly, in contrast to the BFKL equation, the collinear model can be solved, as

a 1-dimensional Schrödinger-like problem.

Section 2 is devoted to the definition of the model in generic number of dimensions. A

preliminary study on the qualitative features of the solution of the master integral equation
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is presented. To this purpose, I briefly review the two types of running-coupling behaviour

that are present in 4 + 2ε dimensions.

The resolution of the model in the fixed-coupling case is presented in section 3. The

ensuing integral equation is then recast into a second order differential equation of Bessel

type, whose solution provides the unintegrated gluon density. The unintegrated gluon

density is first compared with the known perturbative solution [7] and then used to com-

pute the integrated gluon density and anomalous dimension in both the MS-scheme and

Q0-scheme. The last part of this section concerns the analysis of the Mellin representa-

tion of the gluon density and its comparison with the corresponding series and integral

representations derived in ref. [1].

Section 4 includes the one-loop running coupling. In this case the differential equation

is solved in terms of hypergeometric functions. The analyticity properties of the solution

will reveal essential in extending the unintegrated gluon density from the IR-free regime

— where the coupling is bounded — to the ultra-violet (UV)-free regime — where the

Landau pole renders the integral equation meaningless. The explicit results of the b-

dependent resummed MS and Q0 anomalous dimensions — which are shown to agree with

the known lowest order running coupling corrections — provide a strong check for the

connection between ε-dependence of the kernel and b-dependence of the MS anomalous

dimension argued in ref. [1].

A final discussion is reported in section 5.

1.1 Notations

I distinguish two symbols of asymptotic behaviour: f(x) ∼ g(x) means limx→x0

f(x)
g(x) = k

for some finite and non-zero k, while f(x) ≈ g(x) refers to the special case k = 1.

The hypergeometric function is denoted by F2 1(a, b; c; z) ≡ F2 1

(
a , b

c

∣∣∣∣∣ z
)

.

A citation like [1](2.3) means eq. (2.3) of ref. [1].

There are some change of notations between ref. [1] (left side) and this paper (right side):

F(k) −→ ωG(k,k0)

F̃ε(k) eεψ(1)/Γ(1 + ε) −→ fε(t)

−T −→ t0 .

2. Formulation of the collinear model

In this section, I define a simplified model for the gluon density in high-energy QCD with

both running and frozen coupling constant. After recalling the features of the two running

coupling regimes, I briefly discuss the expected qualitative behaviour of the solutions of

the model.
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2.1 Motivation of the model

In high-energy QCD, parton densities and anomalous dimensions are often computed in

two different factorization schemes, which differ essentially by the regularization of the

infra-red (IR) singularities.

• In the so-called Q0 scheme [5], the IR regularization occurs by considering off-shell

initial partons with non-vanishing virtuality k2 = −Q2
0 < 0, which plays the role of a

momentum cut-off;

• The minimal subtraction (MS) scheme instead, is based on dimensional regularization

with on-shell initial partons living in D = 4 + 2ε space-time dimensions, where IR

singularities shows up as poles ∼ 1/εn and are subtracted from the physical quantities

according to the MS prescription.

The relation between these two schemes can be investigated by including in the defining

equations for partons both off-shell initial conditions and arbitrary space-time dimensions.

As for the physical case of 4 space-time dimensions, also in generic D = 4 + 2ε dimen-

sions the high energy (i.e., small-x) behaviour of cross sections in QCD is governed by the

gluon Green’s function (GGF) Gω,ε(k,k0). Here ω is the Mellin variable conjugated to x,

while k and k0 are the transverse momenta of the (reggeized) gluons emerging from the

impact-factors of the external particles [3]. The GGF obeys the integral equation (in the

following the dependence on the ω variable will always be understood)

ωGε(k,k0) = δ2+2ε(k − k0) +

∫
d2+2εk′

(2π)2+2ε
Kε(k,k

′)Gε(k
′,k0) (2.1)

where the kernel Kε has been determined exactly in the leading-log(x) (LLx) approxima-

tion [7] and can be conveniently improved to include subleading corrections (in particular

the running of the coupling). Detailed studies of the ensuing solutions and physical con-

sequences have been presented in refs. [7] in the LLx approximation, and in refs. [1, 10] at

subleading level.

It should be noted that the NLx approximation limits not only the knowledge of the

kernel Kε, but also the method of solution to eq. (2.1). However, it would be desirable to

have an exact solution of eq. (2.1), even with an approximate kernel, in order to understand

the overall “non-perturbative” feature of the QCD gluon Green’s function. To this purpose,

I consider a simplified model for Kε whose main virtue is to provide a GGF which can

be expressed in terms of known analytic functions. This toy-kernel resembles the field-

theoretical one in the collinear regions k2 ≪ k′2 and k2 ≫ k′2, and has already been

considered in the past [9] in order to study the structure of high-energy QCD dynamics

in 4 dimensions. Physically, the collinear regime is important for the description of hard-

scattering processes, since the phase space region of strongly ordered transverse momenta

is responsible for the evolution of partonic densities in the hard-scale variable, according

to the well-known DGLAP equations [2]. In the following I generalize the collinear model

to the dimensional regularized theory, with running coupling as well as with fixed coupling

constant.
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2.2 Definition of the model

The collinear model is defined by the collinear limit k2
< ≪ k2

> of the LLx BFKL high-energy

evolution kernel

KBFKL
ε (k,k′) =

g2Nc

π(k − k′)2
+ virtual terms −→ g2Nc

πk2
>

≡ Kcoll
ε (k,k′) , (2.2)

k< (k>) being the smallest (biggest) transverse momentum, and g the dimensionful gauge

coupling. By introducing the dimensionless coupling constant ᾱs, the small-x expansion

parameter a and the logarithmic variable t

ᾱs ≡
(gµε)2

(4π)1+εΓ(1 + ε)

Nc

π
, a ≡ ᾱs

ω
, t ≡ log

k2

µ2
, (2.3)

we can express both GGF and kernel in terms of the dimensionless quantities fε (the

unintegrated gluon density) and Kcoll defined by

ωGε(k,k0) ≡ δ2+2ε(k − k0) +
Γ(1 + ε)

(πk2)1+ε
fε(t, t0) (2.4)

k2 Kcoll
ε (k,k′) ≡ g2Nc

π
Kcoll(t− t′) , (2.5)

so that one can rewrite eq. (2.1) in the form1

fε(t, t0) = aeεt
[
Kcoll(t− t0) +

∫ +∞

−∞
Kcoll(t− t′)f(t′, t0) dt′

]
(2.6)

= aeεt
[
Θ(t0 − t)et−t0 + Θ(t− t0) +

∫ t

−∞
f(t′, t0) dt′ +

∫ +∞

t
et−t

′

f(t′, t0) dt′
]
,

(2.7)

where in the second line I have substituted the expression of the collinear kernel

Kcoll(τ) = Θ(−τ)eτ + Θ(τ) , τ ≡ t− t′ (2.8)

stemming from eqs. (2.2) and (2.5).

A second way to relate this model to QCD is to compare the eigenvalue function

χcoll(γ) ≡ χ(γ) ≡
∫ +∞

−∞
e−γτKcoll(τ) dτ =

1

γ
+

1

1 − γ
, (2.9)

with the BFKL one χBFKL = 2ψ(1)−ψ(γ)−ψ(1−γ), as in figure 1. Clearly, the two eigen-

value functions display the same qualitative behaviour in the region around and between

the leading-twist poles at γ = 0, 1.

The collinear model can be easily generalized to include the running of the coupling.

The small-x parameter a acquires a t-dependence according to the evolution equation

da(t)

dt
= ε[a(t) −Ba2(t)] , B ≡ bω

ε
(2.10)

1In ref. [1] we adopted a step function Θ(t + T ), T ≡ −t0, instead of K
coll(t − t0) as inhomogeneous

term.

– 5 –



J
H
E
P
0
4
(
2
0
0
8
)
1
0
3

-0.5 0 0.5 1 1.5
Γ

-10

-5

0

5

10 Χcoll

ΧBFKL

Figure 1: Comparison of the collinear model eigenvalue function (solid-blue) with the BFKL one

(dashed-red).

where b is the one-loop beta function coefficient (b = 11/12 − Nf/6Nc in QCD). The

solution of eq. (2.10) is given by [11]

at ≡ a(t) =
aeεt

1 + aB(eεt − 1)
⇐⇒

(
1

a(t)
−B

)−1

= Aeεt , A ≡ a

1 − aB
.

(2.11)

Note that in dimensional regularization (ε 6= 0) the coupling a(t) has a non-trivial t-

dependence also in the so-called frozen coupling case corresponding to b = 0. Substituting

a(t) in place of aeεt in eq. (2.6), we obtain, after rearranging some terms, the generalization

of the collinear model with running coupling:

fε,b(t, t0) = Aeεt
[
Kcoll(t− t0) +

∫ +∞

−∞
Kcoll(t− t′, B)fε,b(t

′, t0) dt′
]

(2.12)

Kcoll(τ,B) ≡ Kcoll(τ) −Bδ(τ) . (2.13)

Instead of using the running coupling a(t), as done in the formulation above, one could ar-

gue that a more natural choice of running-coupling scale, motivated by both DGLAP [2] and

BFKL evolution [12], would be the larger one of the two scales t and t′, i.e., a
(
max(t, t′)

)
.

This choice, however, would spoil the solvability of the model, with the only advantage

of resumming a series of NLx contributions which are beyond the LLx accuracy of the

model. Actually, any way of introducing the running coupling affects the kernel at NLx

level only (with contributions of relative order 1 + (bᾱs)
n). I adopt t as running-coupling

scale because it has the big advantage of providing analytic solutions of the the collinear

model equation.

2.3 Running coupling regimes

It is important at this point to realize that the running coupling behaves in two qualitatively

different ways, according to whether the parameter aB is greater or less than 1.
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Figure 2: Behaviour of the running coupling a(t) in the regular regime aB < 1 (solid-blue) and

in the Landau regime aB > 1 (dashed-red). The straight line (dotted-green) corresponds to the

boundary value aB = 1. The case B = 0 is represented by the dash-dotted black curve.

• When aB < 1, i.e., ᾱs < ε/b, the running coupling a(t) is bounded, positive and

increases monotonically from the IR-stable fixed point a(−∞) = 0 to the UV-stable

fixed point a(+∞) = 1/B, as shown in figure 2.

• When aB > 1, i.e., ᾱs > ε/b, the running coupling starts from the positive UV-stable

fixed point a(+∞) = 1/B, then increases and diverges at the Landau point

tΛ ≡ −1

ε
log(−AB) =

1

ε
log
(
1 − ε

ab

)
, (2.14)

becomes negative for t < tΛ and finally vanishes at t = −∞. This is the situation

realizing the physical limit ε→ 0 at fixed b.

In the former case, the extra-dimension parameter ε not only regularizes the IR singulari-

ties, but avoids also the occurrence of the Landau pole, thus allowing a formulation of the

integral equation free of singularities. In practice, the strategy of dimensional regulariza-

tion consists in computing the physical quantities in the “regular” regime ᾱs < ε/b; the

universal ε-singular factors are then removed into non-perturbative quantities, and finally

by analytic continuation the physical case at ε = 0 is recovered.

2.4 Qualitative behaviour of the solutions

Before embarking upon the resolution of the collinear model equations (2.7), (2.12), it

is instructive to estimate the qualitative behaviour of the solutions by using well-known

methods [5] in the context of high-energy QCD. Particularly important is the factorization

property which allows one to split the unintegrated gluon density f(t, t0) into a perturbative

and a non-perturbative part, provided the “hard scale” t≫ t0 & tΛ is sufficiently large:

f(t, t0) = fpt(t)fnp(t0) × [1 + O
(
e−t
)
] , (2.15)

up to terms exponentially suppressed in t (higher-twists). In turn, the perturbative factor

fpt(t) ∼ exp

{∫ t

γ̄
(
a(t′)

)
dt′
}

(2.16)
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is given in terms of the gluon anomalous dimension γ̄
(
a(t)

)
determined by the small-x

equation

1 = a(t)χ(γ̄) , (2.17)

where χ is the eigenvalue function of the integral kernel in eq. (2.1).

In this collinear model, the eigenvalue function in eq. (2.9) provides two solution to

eq. (2.17)

γ̄±(a) =
1 ±

√
1 − 4a

2
, (2.18)

the perturbative branch being the one with minus sign: γ̄−(a) = a + O
(
a2
)
. At large t,

the running coupling saturates at the UV fixed point a(+∞) = 1/B = ε/bω, so that the

large-t behaviour of the unintegrated gluon density is given by

f(t≫ t0) ∼
∑

j=±
cj(t0)e

t γ̄j(a(+∞)) = c+(t0)e
t
2

“

1+
q

1− 4
B

”

+ c−(t0)e
t
2

“

1−
q

1− 4
B

”

. (2.19)

According to the value of B we expect two kinds of asymptotic behaviour:

• For B > 4 the square root is real and positive, the UV regular solution corresponds

to the perturbative branch γ̄− of the anomalous dimension and we must reject the

(UV irregular) solution which diverges more rapidly: c+ = 0.

• For B < 4 the two exponents are complex conjugate, and the gluon density becomes

oscillatory at large t. It is not possible to distinguish an UV regular solution, and

one has to determine the coefficients c± by analytic continuation in B from B > 4.

The fixed coupling (B = 0) solution belongs to this class.

The above results will be also obtained in a more rigorous way in section 4.1, when treating

the running-coupling equation.

3. Collinear model with frozen coupling (b = 0)

In this section I begin the study of the D-dimensional collinear model. The first step

involves the demonstration of the factorization property (2.16). The next step consists

in determining the large-t behaviour of the integrated gluon density in both Q0 and MS

factorization schemes, thus obtaining the respective anomalous dimensions and coefficient

functions. The last part is deserved to a comparison of my explicit solutions with general

analytic representations of small-x quantities of the QCD literature.

Since the properties of the solution of the collinear model and its connection with the

solution method of ref. [1] are more easily illustrated in the fixed coupling case, I start

considering the integral equation (2.7) with b = 0.

3.1 Solution in momentum space

The presence of the exponential factor in front of the r.h.s. of eqs. (2.6), (2.7) spoils scale

invariance, therefore the determination of both eigenfunctions and eigenvalues of the inte-

gral operator by means of standard techniques is not possible. It turns out, however, that

– 8 –
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one can exactly solve eq. (2.7). In fact, by differentiating it twice with respect to t, we

obtain the second order differential equation (the ε-dependence of f is understood in this

section)

f ′′ − (1 + 2ε)f ′ + [ε(1 + ε) + aeεt]f = −a eεt0 δ(t− t0) , (3.1)

which can be recast in a more familiar form if we introduce the variables

η ≡ 1

ε
, z ≡ 2η

√
aeεt , f(t, t0) ≡ zη+2F(z, z0) , (3.2)

thus obtaining

z2F′′ + zF′ + [z2 − η2]F = −z2
0N(z0)δ(z − z0) , N(z0) ≡

1

2ηzη+1
0

. (3.3)

In the l.h.s. of eq. (3.3) one recognizes the differential operator defining the Bessel functions

J±η(z) and Yη(z) as solutions of the corresponding homogeneous equation.

The general solution of eq. (3.3) has the form

F(z, z0) = cI(z0)FI(z)Θ(z0 − z) + cU (z0)FU (z)Θ(z − z0) (3.4)

where FI and FU denote respectively the IR-regular and the UV-regular solutions of the

homogeneous equation, while cI and cU are z0-dependent coefficients to be determined by

the two conditions of continuity of F and discontinuity of ∂zF at z = z0:

lim
z→z+0

F(z, z0) − lim
z→z−0

F(z, z0) = cU (z0)FU (z0) − cI(z0)FI(z0) = 0 (3.5a)

lim
z→z+0

∂zF(z, z0) − lim
z→z−0

∂zF(z, z0) = cU (z0)F
′
U (z0) − cI(z0)F

′
I(z0) = −N(z0) ,

(3.5b)

where the gluon “source” N(z0) has been defined in eq. (3.3). By solving the above linear

system one obtains

F(z, z0) =
N(z0)

W (z0)
[FI(z)FU (z0)Θ(z0 − z) + FU (z)FI(z0)Θ(z − z0)] , (3.6)

where W = FUF′
I − F′

UFI is the Wronskian of the two solutions of the homogeneous

equation.

It remains to determine FI and FU , each being a linear combinations of, say, Jη and

Yη:

Fs(z) = c(1)s Jη(z) + c(2)s Yη(z) , (s = I, U) (3.7)

(the absolute normalization is irrelevant). From the asymptotic relations

Jη(z) ∼ zη (z → 0), Jη(z) ∼ z−1/2 cos(z + φ1) (z → +∞) (3.8a)

Yη(z) ∼ z−η (z → 0), Yη(z) ∼ z−1/2 cos(z + φ2) (z → +∞) (3.8b)

it is clear that the IR-regular solution is FI ∝ Jη , since it vanishes more rapidly than

any linear combination containing Yη(z) when z → 0 with η > 0. In addition, fI(t) =

– 9 –
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zη+2FI(z) ∼ e(1+ε)t agrees with the inhomogeneous term of eq. (2.7) at t < t0. On the

other hand, the UV-regular solution cannot be determined in this case of b = 0, because

of the identical asymptotic behaviour (up to normalization and phase) for z → +∞ of all

solutions in eq. (3.7). However, the UV-regular solution can be unambiguously determined

in the formulation with running coupling (cf. section 4.3), and in the b→ 0 limit it reduces

to FU (z) = Yη(z). In conclusion

FI(z) = Jη(z) (3.9)

FU (z) = Yη(z) = [cos(πη)Jη(z) − J−η(z)]/ sin(πη) (3.10)

W (z) = YηJ
′
η − JηY

′
η = −2/πz , (3.11)

whence

F(z, z0) = − π

4ηzη0
[Jη(z)Yη(z0)Θ(z0 − z) + Yη(z)Jη(z0)Θ(z − z0)] . (3.12)

It is possible to show that F(z, z0) in the previous equation obeys also the integral equa-

tion (2.7). As expected, for t > t0 (i.e., z > z0), the solution (3.12) fulfills the factorization

property (2.16), and shows an oscillatory behaviour for large t at fixed t0. This is due to the

fact that, since the coupling a(t) grows without bounds at large t, the effective anomalous

dimension (2.18) becomes complex.

3.2 On-shell limit and perturbative expansion

It is important at this point to check the explicit solution in eq. (3.12) with known re-

sults of the literature. The perturbative expression for the GGF G(k,k0) in dimensional

regularization was given in [7](3.3) for an on-shell (k0 = 0) initial gluon. In terms of the

dimensionless density fε their perturbative expansion reads

fε(t) = aeεt


1 +

∞∑

m=1

(
aeεt

)m m∏

j=1

χ(jε, ε)


 (3.13)

for a generic integral kernel with eigenvalue function χ(γ, ε).

On the other hand, the on-shell limit k0 → 0 ⇐⇒ t0 → −∞ of the collinear

model unintegrated gluon fε(t, t0) at fixed t, ε, ᾱs is finite, and can be obtained from

eqs. (3.2), (3.12) by exploiting the asymptotic behaviour of Bessel functions Jη(z0) ≈
(z0/2)

η/Γ(1 + η) for z0 → 0, whence

fε(t) ≡ lim
t0→−∞

fε(t, t0) = zη+2 lim
z0→0+

− π

4ηzη0
Jη(z0)Yη(z) = − π

ηΓ(η + 1)

(z
2

)η+2
Yη(z) .

(3.14)

In words, the on-shell unintegrated gluon density is equal to the UV regular solution of the

homogeneous differential equation with a proper normalization.

In order to compare the solution (3.14) with the perturbative expression (3.13), one

has to expand the r.h.s. of eq. (3.14) in series of z2 ∼ a. By rewriting Yη as a combination

of J±η according to eq. (3.10), and then using the ascending series [13](9.1.10)

Jν(z) =
(z

2

)ν ∞∑

m=0

(−z2/4)m

m!Γ(1 + ν +m)
, (3.15)
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one obtains

fε(t) =
π

ηΓ(η + 1) sin(πη)

(z
2

)η+2
[J−η(z) − cos(πη)Jη(z)] (3.16)

= aeεt
∞∑

m=0

(
−η2aeεt

)m

m!

Γ(1 − η)

Γ(1 − η +m)

− cos(πη)Γ(1 − η)η2η
(
aeεt

)η+1
∞∑

m=0

(
−η2aeεt

)m

m!Γ(1 + η +m)
.

The first term in the r.h.s. of eq. (3.16) exactly reproduces the perturbative result (3.13),

since for m ≥ 1

−η2m

m!

Γ(1 − η)

Γ(1 − η +m)
=

m∏

j=1

−1/ε2

j(−1
ε + j)

=
m∏

j=1

1

jε(1 − jε)
=

m∏

j=1

χ(jε) . (3.17)

The second term of eq. (3.16) provides genuine non-perturbative contributions of order

a1/ε+1+met[1+(1+m)ε], each being outside the domain of the kernel and therefore out of the

reach of the iterative procedure. However, this term is strongly suppressed ∼ a1/ε when

ε→ 0 with respect to the perturbative one. Therefore, in the limit ε→ 0 the perturbative

solution agrees with the exact one to all orders.2

As final remark, the series in eqs. (3.13), (3.16) converge for all t ∈ R, as one can check

from the γ → +∞ asymptotic behaviour of χ(γ) ∼ 1/γ.

3.3 Integrated gluon densities

The major issue this paper is devoted to, concerns the MS ↔ Q0 scheme-change, namely

the relation between gluon densities and anomalous dimensions in the two factorization

schemes. In the collinear model, the off-shell integrated gluon density defined by

gε(t, t0) ≡
∫

d2+2εk′ ωG(k′,k0)Θ(k2 − k′2) = 1 +

∫ t

−∞
dt′ fε(t

′, t0) (3.18)

can be computed in closed form (app. A.1), and for t > t0 reads

gε(t, t0) = −π z
2

(
z

z0

)η
Jη(z0)Yη+1(z) (t > t0) . (3.19)

Note the remarkable fact that g, like f , is exactly factorized in the t- and t0-dependence.

The Q0-scheme gluon is given by the ε → 0 limit of the above expression, yielding

(app. A.2)

g(Q0)(t, t0) ≡ lim
ε→0

gε(t, t0) =
a√

1 − 4a γ̄(a)
exp [γ̄(a)(t− t0)] , (3.20)

where γ̄(a) is the perturbative branch of the four-dimensional anomalous dimension γ̄−(a)

given in eq. (2.18). From eq. (3.20) one immediately derives the Q0-scheme anomalous

dimension (a dot means t-derivative)

γ(Q0)(a) ≡ lim
t0→−∞

ġ(Q0)(t, t0)

g(Q0)(t, t0)
=

1 −
√

1 − 4a

2
(ġ ≡ ∂tg) . (3.21)

2These conclusions are valid in the off-shell case (t0 ∈ R) too, but for sake of simplicity they have been

presented only in the on-shell case.
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It is apparent from eq. (3.21) that the fixed-coupling anomalous dimension has a branch

cut singularity at a = 1/χmin = 1/4 — the so-called “hard-Pomeron” singularity —, since

the eigenvalue function (2.9) cannot be inverted around its minimum χmin = 4 so as to

provide γ̄ as a function of a according to eq (2.17).

The relation with the MS-scheme anomalous dimension is obtained as follows. From

the ε→ 0 asymptotic behaviour of the on-shell gluon density (app. A.2)

gε(t) = [1 + O (ε)]
a

γ̄(a)[1 − 4a]1/4
exp

{
1

ε

∫ aeεt

0

da

a

γ̄(a)

}
≡ Rε(a)g

(MS)
ε (t) (3.22)

one identifies the exponential in eq. (3.22) as the MS gluon density g(MS)(t),3 since it sums

all and only ε-singular terms up to the scale k2 = µ2eεt. The MS anomalous dimension is

then computed from the logarithmic derivative

γ(MS)(a) ≡ lim
ε→0

ġ
(MS)
ε (t)

g
(MS)
ε (t)

= γ̄(a) (3.23)

and coincides, in this case of b = 0, with the Q0-scheme anomalous dimension, in agreement

with refs. [7] and [1].

The coefficient function R in eq. (3.22) is finite in the ε → 0 limit, and provides a

non-trivial relation between MS and Q0 gluons:

g(Q0) = Rg(MS) . (3.24)

According to ref [1], R can be decomposed in the product R = NR, where

N(a) =
1

γ̄(a)
√

−χ′
(
γ̄(a)

) =
a

γ̄(a)[1 − 4a]1/4
(3.25)

is the fluctuation factor of the saddle-point estimate introduced in [1] (cf. also eq. (3.40)),

while

R(a) = exp

{∫ γ̄(a)

0

χ1(γ)

χ0(γ)
dγ

}
, χ(γ, ε) = χ0(γ) + εχ1(γ) + O

(
ε2
)

(3.26)

originates from the ε-dependence of the eigenvalue function. Since in this model χ is

independent of ε, χ1 = 0, R = 1 and therefore R = N, in agreement with eq. (3.22).

To sum up, at b = 0 the Q0 ↔ MS scheme-change preserves the anomalous dimension,

but the gluon densities differ by a factor given by coefficient function R.

3Due to the particular definition of ᾱs in eq. (2.3) which includes ε-dependent factors, eq. (3.22) defines

a “modified” minimal subtraction scheme, related to the customary MS and MS schemes by a finite scheme

change. These details are unimportant for the purpose of this paper.
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3.4 Solution in γ space

Having the solution of the integral equation at our disposal, one can check the procedure

suggested in ref. [1], at least in this simplified model. I start reviewing the main steps of

that procedure.

1) One introduces an integral representation of Mellin-type for the unintegrated gluon

density fε(t, t0):

fε(t, t0) =

∫

C

dγ

2πi
eγtf̃ε(γ, t0) . (3.27)

2) In γ-space, the integral equation (2.7) is then recast into the finite difference equa-

tion

f̃ε(γ + ε, t0) = aχ(γ)e−γt0 + aχ(γ)f̃ε(γ, t0) . (3.28)

3) The finite difference equation (3.28) is solved in terms of a Laurent series in ε, so

as to provide the following expression (cf. [1], section 2 and eqs. (C.1,C.2)) for the on-shell

unintegrated gluon density:

fε(t) = Ω(a, ε)

∫

C

dγ

2πi
eγt exp

{
1

ε

∫ γ

0
L(γ′) dγ′ − 1

2
L(γ) +

∞∑

n=2

Bn
n!

εn−1L(n−1)(γ)

}
,

(3.29)

where Ω =
√
a/2πε[1 + O (ε)] is a normalization factor, L(γ) ≡ log

(
aχ(γ)

)
, L(n) ≡ ∂nγL,

and the coefficients Bn denote Bernoulli numbers.

4) The solution is determined by assuming the existence of a stable saddle point along

the real axis.

Let me analyze each point in turn, in the context of the collinear model.

1) Concerning the existence of a Mellin representation for the solution f of the integral

equation (2.7), the asymptotics in eq. (3.8) guarantee that the Mellin transform f̃ is defined

in the strip 1/2 + 3ε/4 < ℜγ < 1 + ε for all ε > 0. Explicitly, f̃ is given in terms of

F1 2(u;u+ 1, v;−z2
0/4) sums, as follows:

f̃ε(γ, t0) ≡
(∫ t0

−∞
+

∫ +∞

t0

)
dt e−γtfε(t, t0) ≡ f̃ (−)

ε (γ, t0) + f̃ (+)
ε (γ, t0) (3.30a)

f̃ (−)
ε (γ, t0) = π

(z0
2

)η
Yη(z0) e−γt0

∞∑

k=1

(−z2
0/4)

k

(k − 1)! [k + η(1 − γ)] Γ(k + η)
(3.30b)

f̃ (+)
ε (γ, t0) = π

(z0
2

)−η
Jη(z0)

{
−(aη2)ηγ cot(πηγ)

Γ
(
1 + η(1 − γ)

)

Γ(ηγ)
(3.30c)

+
e−γt0

sin(πη)

∞∑

k=1

(−z2
0/4)

k

(k − 1)!

[
1

(k − ηγ)Γ(k − η)
− (z2

0/4)
η cos(πη)

[k + η(1 − γ)]Γ(k + η)

]}
.

I will show now that, with a proper choice of the contour C, only the first term of f̃ (+) in

eq. (3.30c) contributes to the inverse Mellin transform (3.27) for t > t0 — the relevant region

for the on-shell limit. Notice that the analytic continuation of f̃ defines a meromorphic
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Figure 3: Singularity structure of the Mellin transform f̃ε(γ, t0) in the complex γ-plane. The

shadowed region corresponds to the convergence strip of the Mellin transform; the crosses indicate

the position of the singularities; the circles show the location of the poles of the terms in f̃
(+)
ε ;

also shown are the original integration path C in eq. (3.27), and the deformed contour C′ used in

eq. (3.31).

function whose singularities are just the simple poles of f̃ (−) at γ = 1 + kε : k = 1, 2, · · · ,
as shown in figure 3. Actually, f̃ (+) is holomorphic in the whole plane γ ∈ C, since the

poles at γ = kε : k = 1, 2, · · · stemming from the ratio cot(πηγ)/Γ(ηγ) in the first line of

eq. (3.30c) are exactly canceled by those in the sum on the second line; furthermore, the

poles at γ = 1 + kε : k = 1, 2, · · · stemming from Γ
(
1 + η(1 − γ)

)
in the first line are also

canceled by those in the sum on the second line.

It is convenient to compute the inverse Mellin transform separately for the (−) and

(+) pieces. In the integral of eγtf̃ (−)(γ, t0) one can close the contour path to the left

(t − t0 > 0), without crossing any singularity, thus obtaining a vanishing contribution, as

expected. Considering now the integral of eγtf̃ (+)(γ, t0), one is not allowed to close the

contour either to the left or to the right, because the factor eγ(t−t0) in front of the sum

grows for ℜ(γ) → +∞, while the ratio of gamma-functions in the first term grows with |γ|
for ℜ(γ) < 1/2 + ε/2. However, by folding the contour C → C′ so as to let it cross the real

axis at some value γ0 < ε (remember that f̃ (+) has no singularity), and then computing

the two contributions of eq. (3.30c) separately, one obtains a vanishing integral from the

second line, because the contour can be closed to the left without crossing any singularities.

To summarize, with an integration contour C′ crossing the real axis at γ0 < ε and

going to infinity with ℜ(γ) > 1/2 + ε/2 as in figure 3, only the first term in eq. (3.30c)

contributes in the γ-representation (3.27) for t > t0.

By performing the on-shell limit I end up with

fε(t) ≡ lim
t0→−∞

fε(t, t0)

= − π

Γ(1 + η)

∫

C′

dγ

2πi
eγt(aη2)ηγ cot(πηγ)

Γ
(
1 + η(1 − γ)

)

Γ(ηγ)

≡
∫

C′

dγ

2πi
eγtf̃ε(γ) , (3.31)

which is just the Mellin-Barnes representation [13](9.1.26) of the Bessel function in
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eq. (3.14).

2) It is straightforward to check that the on-shell Mellin transform f̃ε(γ) in eq. (3.31)

obeys the homogeneous difference equation

f̃ε(γ + ε) = aχ(γ)f̃ε(γ) (3.32)

analogous to eq. [1](2.11). With some more effort, one can show that the off-shell expres-

sion (3.30) obeys the inhomogeneous difference equation (3.28).

3) Concerning the representation (3.29) for the gluon density, it is interesting to check

explicitly its validity and to study the convergence type of its series. By explicitly com-

puting the integral and the derivatives of L(γ) in the collinear model

∫ γ

0
L(γ′) dγ′ = γ log(a) − γ log(γ) + (1 − γ) log(1 − γ) + 2γ

L(m)(γ) = (m− 1)![(−1)mγ−m + (1 − γ)−m] (m ≥ 1) , (3.33)

the exponent within curly brackets in eq. (3.29) becomes (B2m+1 = 0 : m ≥ 1)

S(γ) = η[γ log(a) + 2γ − γ log(γ) + (1 − γ) log(1 − γ)] (3.34)

− 1

2
log(a) +

1

2
log(γ) +

1

2
log(1 − γ)

+

∞∑

m=1

B2m

2m(2m− 1)

{
[η(1 − γ)]1−2m − [ηγ]1−2m

}
.

The sum in the above equation is typical of the asymptotic expansion of the logarithm

of the gamma-function [13](6.1.40). In fact, by comparing eq. (3.34) with the asymptotic

expansion

log Γ
(
η(1 − γ)

)
− log Γ(ηγ) ≈ η [(1 − 2γ) log(η) − 1 + 2γ − γ log(γ) + (1 − γ) log(1 − γ)]

+
1

2
log(γ) − 1

2
log(1 − γ)

+

∞∑

m=1

B2m

2m(2m − 1)

{
[η(1 − γ)]1−2m − [ηγ]1−2m

}
(3.35)

one gets

exp{S(γ)} ≈ eη√
a ηη+1

(aη2)ηγ
Γ
(
1 + η(1 − γ)

)

Γ(ηγ)
. (3.36)

Apart from the irrelevant normalization factor eη/
√
aηη+1, eq. (3.36) agrees with the inte-

grand in eq. (3.31), when one takes into account that the η → +∞ asymptotic expansion in

powers of 1/η of cot(πηγ) is a numeric constant (∓i according to the sign of ℑγ). Because

of the similar shape of χcoll and χBFKL, I expect the representation (3.29) to be of asymp-

totic type also in QCD. However, the ambiguity in determining the solution (illustrated

here by the unpredicted cot(πηγ) factor), is irrelevant for the determination of the physical

quantities, like the anomalous dimension and coefficient function in the MS-scheme, as

shown in the following.
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Figure 4: a) The imaginary part of the integrand in eq. (3.31) showing the singularities on the

positive real semi-axis; in yellow a sketch of the fastest convergence path. b) asymptotic limit of

the integrand showing the discontinuity (3.37) on the real axis with a peak around the saddle point

value (3.39).

4) The last step is to evaluate the integral in eq. (3.31) in the large-η limit. It turns

out that, for small values of ε and values of aeεt < 1/χ(1/2) = 1/4, the fastest convergence

contour path surrounds the interval 0 < ℜ(γ) < 1/2 (cf. figure 4) at a distance decreasing

with ε. The main contribution to the integral comes just from this region (parts B and D

in figure 4). In the limit of vanishing ε, the string of poles at γ = kε accumulates into a

branch-cut at γ ∈]0,+∞[. In fact, while the ratio of gamma-functions is regular at γ > 0

also in the η → +∞ limit, the cotangent cot(πηγ) → −i sign(ℑγ) becomes discontinuous

across the real axis with a jump equal to −2i.

Therefore, neglecting the contributions to the integral in eq. (3.31) from the parts A,

C and E of the contour path, the contributions of B and D amount to the integral in

γ ∈]0, 1/2[ of the discontinuity of the integrand, which can be easily obtained by replacing

cot(πηγ) with −2i. One obtains

fε(t) ≈
1

Γ(η + 1)

∫ 1/2

0
dγ eγt(aη2)ηγ

Γ
(
1 + η(1 − γ)

)

Γ(ηγ)
≈

√
a e−ηηη+1

Γ(η + 1)

∫ 1/2

0
dγ eγt+S(γ) ,

(3.37)

where use have been made of eq. (3.36).

Some remarks are in order. Firstly, by expanding in ε → 0 the prefactor in the r.h.s.

of eq. (3.37)
√
a e−ηηη+1/Γ(η+ 1) =

√
a/2πε[1 +O (ε)], eq. (3.29) is correctly reproduced.

Secondly, the integrand, being a discontinuity of a solution of the difference equation (3.32),

is itself a solution of the same equation. Thirdly, the integral representation (3.37) of the

on-shell density f uses an integration path lying on the real axis.

The last remark explains the possibility of having a stable saddle point in the real

direction, despite the fact that our original integral in eq. (3.27) involves a real analytic
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integrand and an integration contour C parallel to the imaginary axis. In fact, according

to the analysis of [1], in the η → ∞ limit the leading part of the exponent in eq. (3.37) is

given by

γt+ S(γ) ≃ γt+ η

∫ γ

0
L(γ′) dγ′ + O

(
η0
)
, (3.38)

having considered t a possibly large parameter. The saddle point condition is

(cf. eqs. (2.17), (2.18))

{
εt+ log [aχ(γ̄)] = 0

χ′(γ̄) < 0
⇐⇒ γ̄(aeεt) =

1 −
√

1 − 4aeεt

2
= aeεt + O

(
(aeεt)2

)
(3.39)

and is fulfilled when 4aeεt < 1 so that 0 < γ̄ < 1/2. The saddle point behaviour of the

discontinuity of the original integrand f̃(γ) is apparent in figure 4. The final result is

fε(t) ≈ 1√
−χ′(γ̄)

exp

{
γ̄ t+

1

ε

∫ γ̄

0
log[aχ(γ′)] dγ′

}

=
aeεt

[1 − 4aeεt]1/4
exp

{
1

ε

∫ aeεt

0

da

a

γ̄(a)

}
, (3.40)

and exhibits the factorization of the 1/ε collinear singularities, thus allowing us to derive

the relation between the MS and Q0 gluons, as explained in the previous section.

In conclusion, the analysis of the frozen-coupling collinear model provides analytic

expressions for the gluon densities and anomalous dimensions in both MS- and Q0-schemes

which agree with the results of ref. [1], section 2. In particular, the explicit expression of the

Mellin transform f̃ε(γ) offers a concrete test of the asymptotic series representation (3.29),

and also allows us to understand the relation between the original Mellin integral (3.31)

and the real-axis integral (3.37), the latter being the basic tool to prove (by saddle-point

estimate) the factorization of collinear singularities (3.40), (3.22).

4. Collinear model with running coupling (b > 0)

In this section I shall extend the collinear model to the more realistic situation of running

coupling. I shall show that most of the analysis preformed in section 3 for the fixed

coupling case can be carried out with running coupling too. In this case, the running

coupling corrections alter the Q0 and MS gluon densities in different way, determining

different anomalous dimensions in the two schemes.

4.1 Asymptotic behaviour of the solutions

Let me begin by inspecting the qualitative behaviour of the running coupling unintegrated

gluon in dimensional regularization. Like the b = 0 case, the solution of eq. (2.12) obeys a

second order differential equation:

(1 +ABeεt)f ′′ − (1 + 2ε+ABeεt)f ′ + [ε(1 + ε) +Aeεt]f = −Aeεt0δ(t− t0) . (4.1)
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In order to characterize the IR and UV regular solutions of the homogeneous equation, I

first determine their large-|t| behaviour. This can be accomplished by rewriting eq. (4.1)

in Schrödinger-like form and then using the WKB approximation. In detail, by letting

f(t) ≡ e( 1
2
+ε)t

1 +ABeεt
h(t) , (4.2)

we obtain for h the Schrödinger equation

h′′ − V h = 0 , V (t) =
1

4
− 1

B
+

1

B(1 +ABeεt)
. (4.3)

The WKB approximation of the solution of eq. (4.3), written in terms of the wave-number

κ ≡
√
V , reads

h(t) ≃ 1√
κ(t)

exp

{
±
∫
κ(t) dt

}
, (4.4)

and yields, when inserted into eq. (4.2), the two possible asymptotic behaviours of f(t).

In the IR region (t → −∞) we have

λ ≈ e( 1
2
+ε)t , V → 1

4
, f ∼ exp

[(
1

2
+ ε± 1

2

)
t

]
, (4.5)

and one identifies the IR regular solution as the one which vanishes more rapidly, i.e.,

fI ∼ e(1+ε)t.

In the UV region (t→ +∞) we have

λ ∼ et/2 , V → 1

4
− 1

B
, f ∼ exp

[
1

2

(
1 ±

√
1 − 4

B

)
t

]
(4.6)

and the solutions can have an exponential or oscillatory behaviour according to whether

B is greater than or less than 4. In the former case, one again identifies the UV regular

solution as the one which vanishes more rapidly, i.e., fU ∼ exp
[

1
2

(
1 −

√
1 − 4

B

)
t
]
.

According to the value of B — and always considering a < 1/4 — it is convenient to

distinguish 3 regimes where the “potential” V is qualitatively different (cf. figure 5):

R1 : 0 < B < 4

The potential is regular for all values of t ∈ R, since A > 0, and its UV limit is negative:

V (+∞) =
1

4
− 1

B
< 0 . (4.7)

As a consequence, in the UV region the wave-number κ is pure imaginary and all solutions

share the same oscillatory behaviour, up to a relative phase. The UV regular solution is

thus ambiguous.

R2 : 4 < B < 1/a

The potential is regular for all values of t ∈ R, since A > 0, and its UV limit V (+∞) is

positive. Hence, the wave-number κ is real throughout the whole t range and both IR and

UV regular solutions are uniquely determined from their physical exponential behaviour.

This regime is particularly useful for a regularized formulation of QCD, because it provides
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Figure 5: The potential V (t) of the Schrödinger equation (4.3) in the three running-coupling

regimes: R1 (solid-red), R2 (dashed-green) and R3 (dotted-blue).

a positive definite and bounded running coupling. In this way, the collinear divergencies

and the Landau singularity are regularized at once.

R3 : 1/a < B

The potential is singular at the Landau point tΛ of eq. (2.14), where the coupling diverges.

This singularity might prevent the existence of a global solution for the integral equa-

tion (2.12). Nevertheless, the UV regular solution of the differential equation (4.1) can be

unambiguously identified, and this suffices to determine the gluon anomalous dimension.

In the next section I shall explicitly compute the solution of the integral equation (2.12)

in the intermediate regime R2. In the subsequent sections I extend the analysis to the

regime R1 relevant in the limiting case b → 0, and to the regime R3 where the physical

situation ε→ 0 at fixed b is recovered.

4.2 Solution in momentum space

By introducing the new variables

ζ ≡ −ABeεt = − a(t)B

1 − a(t)B
, f(t, t0) ≡ −ζF(ζ, ζ0) (4.8)

the integral equation (2.6) becomes

F(ζ, ζ0) =
1

B(1 − ζ)

[
Θ(ζ0 − ζ) + Θ(ζ − ζ0)

( −ζ
−ζ0

)η]

− η

B(1 − ζ)

[∫ ζ

0
F(ζ ′, ζ0) dζ ′ + (−ζ)η

∫ −∞

ζ
(−ζ ′)−ηF(ζ ′, ζ0) dζ ′

]
. (4.9)

By differentiating the above equation twice with respect to ζ yields the differential equation

ζ(1 − ζ)F ′′ + [(1 − η) + (η − 3)ζ]F ′ −
(
η2

B
− η + 1

)
F =

η

B
δ(ζ − ζ0) , (4.10)
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whose homogeneous version is just the hypergeometric differential equation with parame-

ters u, v;w given by

u, v ≡ 1 − η

2

(
1 ±

√
1 − 4

B

)
, w ≡ 1 − η = u+ v − 1 . (4.11)

Let me now consider the regime R2 in which 4 < B < 1/a so that u < v are both

real, A > 0 and ζ < 0 is a decreasing function of t (cf. eq. (4.8)). At variance with the

b = 0 case, both IR (ζ → 0−) and UV (ζ → −∞) regular solutions of the homogeneous

differential equation (4.10), are unambiguously identified, as pointed out in section 4.1.

Explicitly

FU (ζ) ≡ cU (−ζ)−v F2 1

(
2 − u , v

v − u+ 1

∣∣∣∣∣
1

ζ

)
, cU ≡ Γ(2 − u)Γ(1 − u)

Γ(1 − w)Γ(v − u+ 1)
(4.12)

FI(ζ) ≡ (−ζ)1−w F2 1

(
2 − u , 2 − v

2 − w

∣∣∣∣∣ ζ
)

(4.13)

W [FU ,FI ] = (w − 1)(−ζ)−w(1 − ζ)−2 . (4.14)

By repeating the steps outlined in section 3.1, the conditions of continuity of F at ζ = ζ0
and discontinuity of the first derivative −N(ζ0) = η/[Bζ0(1 − ζ0)] provide the solution of

eqs. (4.9) and (4.10):

F(ζ, ζ0) =
1 − ζ0
B(−ζ0)η

[FI(ζ)FU (ζ0)Θ(ζ − ζ0) + FU (ζ)FI(ζ0)Θ(ζ0 − ζ)] , (4.15)

The integrated gluon density defined in eq. (3.18) can be computed in closed form,

and for t > t0 reads (app. A.3)

gε,b(t, t0) = cU
η(1 − ζ0)

B(1 − v)(−ζ0)η
FI(ζ0) (−ζ)1−v F2 1

(
2 − u , v − 1

v − u+ 1

∣∣∣∣∣
1

ζ

)
(t > t0) , (4.16)

showing also in this case a factorized structure. It is interesting to note that the dependence

of the equations and their solutions on t occurs only through ζ, and because of eq. (4.8),

only through the coupling a(t).

The on-shell limit ζ0 → 0− of both integrated and unintegrated densities are finite and

can be easily computed by noting that FI(ζ0)/(−ζ0)η → 1, whence

fε,b(t) =
−ζ
B

FU (ζ) (4.17)

gε,b(t) = cU
η

B(1 − v)
(−ζ)1−v F2 1

(
2 − u , v − 1

v − u+ 1

∣∣∣∣∣
1

ζ

)
. (4.18)

The comparison of the unintegrated gluon density (4.17) with the perturbative so-

lution (3.13) can be obtained rewriting the UV regular solution FU as the sum of two

hypergeometric functions with argument ζ by means of the inversion formula [13](15.3.7)

FU (ζ) = F2 1

(
u , v

w

∣∣∣∣∣ ζ
)

+
Γ(2 − u)Γ(1 − u)Γ(w − 1)

Γ(v)Γ(v − 1)Γ(1 − w)
FI(ζ) (4.19)
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Figure 6: Unintegrated gluon densities (times e−t/2) in various running-coupling regimes, with

parameters a = 0.2, η = 4.5 and t0 = 0. On the left side: lowest perturbative order (dash-dotted-

black), fixed coupling (solid-red), regime R1 (dashed-purple), regime R2 (dotted-blue); on the

right side: again regime R2 (dotted-blue), boundary between R2 and R3 (dashed-green), regime

R3 (solid-cyan) and ε→ 0 limit at fixed b = 1.2 (dash-dotted-brown). The last two curves diverge

at their Landau points.

and then using their series representation [13](15.1.1). The first term yields

−ζ
B

F2 1

(
u , v

w

∣∣∣∣∣ ζ
)

= Aeεt

{
1 +

∞∑

n=1

(Aeεt)n
n∏

k=1

(u+ k − 1)(v + k − 1)(−B)

(w + k − 1)k

}

= Aeεt

{
1 +

∞∑

n=1

(Aeεt)n
n∏

k=1

[χ(kε) −B]

}
, (4.20)

and provides the b-dependent version of the perturbative expansion (3.13) in terms of the

parameter A = a/(1−aB) and of the “effective” eigenvalue function χ(γ)−B relative to the

kernel defined in eq. (2.13). The additional contribution to f(t) due to the second term in

eq. (4.19) is purely non-perturbative and of order (−ζ)FI ∼ (−ζ)2−w ∼ a1/ε+1et(1+ε). How-

ever, in the ε → 0 limit, the perturbative solution (4.20) agrees with the exact one (4.17)

to all orders, because of the suppression factor a1/ε in the non-perturbative term (cf. sec-

tion 3.2).

As last remark, the domain of convergence of the series in eq. (4.20) is finite (eεt <

|AB|−1 = |1 − ε/bᾱs|), unlike the b = 0 case.

4.3 Fixed coupling limit b→ 0

It is important to study the limit b→ 0 because, as already mentioned in section 3.1, it is

not clear how to determine the UV regular function in the frozen coupling case. Actually,

we saw in section 4.1 that this problem is also present at b > 0 when B < 4 (regime R1 ).

Therefore, I shall first derive the expression of the UV regular solution FU for B < 4 and

then compute its limiting result at B = 0.
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Clearly, B = 4 is a point of non-analyticity for the coefficients u, v and therefore also

for the functions FI , FU . When B < 4, the coefficients u, v become complex conjugate.

It is easily verified that the IR regular solution FI remains real. On the other hand, the

expression for FU in eq. (4.12) yields two different (complex) results depending on the choice

ℑu = −ℑv either greater or less than zero — corresponding to an analytic continuation

from B > 4 to B < 4 in the complex variable BC, from above (BC = B+i0) or from below

(BC = B − i0).

Note that B = 4 is by no means a critical value for the coefficients of the differential

equations (4.1), (4.10): it only separates the regimes of positive and negative effective

potential in the UV region. Since nothing prevents the existence of a real solution, it seems

reasonable to define the UV regular solution at B < 4 by taking the average of the two

analytic continuations:

FU (ζ;B < 4) ≡ 1

2
[FU (ζ;B + i0) + FU (ζ;B − i0)] = ℜFU (ζ;B ± i0) . (4.21)

Of course, the definition (4.21) joins continuously with the original definition (4.12) at

B = 4. An explicit expression of the UV regular solution for all B > 0 can be obtained by

applying the prescription (4.21) to eq. (4.19):

FU (ζ) = F2 1

(
u , v

w

∣∣∣∣∣ ζ
)

+ℜ
(

Γ(2 − u)Γ(1 − u)

Γ(v)Γ(v − 1)

)
Γ(w − 1)

Γ(1 − w)
(−ζ)1−w F2 1

(
2 − u , 2 − v

2 − w

∣∣∣∣∣ ζ
)

(4.22)

The B → 0 limit, at fixed a, ε, t is then performed by exploiting the series repre-

sentation for the hypergeometric functions and the Stirling approximation for the ensuing

gamma-functions:

F2 1

(
u , v

w

∣∣∣∣∣ ζ
)

≈ Γ(1 − η)
(z

2

)η
J−η(z) (4.23a)

F2 1

(
2 − u , 2 − v

2 −w

∣∣∣∣∣ ζ
)

≈ Γ(1 + η)
(z

2

)−η
Jη(z) (4.23b)

ℜΓ(2 − u)Γ(1 − u)

Γ(v)Γ(v − 1)
≈ ℜeiπη

(
η2

B

)η
= cos(πη)

(
η2

B

)η
. (4.23c)

Note in particular the cosine term in eq. (4.23c) stemming from the real part of the complex

exponential: it is exactly the “relative weight” between Jη and J−η needed to build up

the Bessel function of the second kind Yη, according to eq. (3.10). In conclusion, the

substitution of the expressions (4.23) into eq. (4.15) yields the fixed-coupling result (3.12),

when the proper normalization factors between F(z) and F(ζ) are taken into account.

4.4 Integrated gluon densities

In this section I show how to derive explicit expressions for the integrated gluon densities

and anomalous dimensions in the MS-scheme and Q0-scheme in the running coupling case.

In particular, in this model it is confirmed the claim of ref. [1] that the running coupling
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corrections to the MS anomalous dimension γ(MS)
(
a(t), b

)
are provided to all orders by the

ε-dependence of the eigenvalue function χ(γ, ε), according to the relation

1 = a(t)χ
(
γ(MS), a(t)bω

)
, (4.24)

where ε has been replaced by a(t)bω.

4.4.1 MS-scheme

The MS gluon for b 6= 0 is defined in two steps. First, at fixed b and ε, one perturbatively

(ᾱs → 0) computes the integrated gluon in dimensional regularization. This implies that

the calculation is naturally performed with ᾱs < ε/b, i.e., a < 1/B, which corresponds to

the regimes R1 and R2. Then, all ensuing IR singularities appearing as poles at ε = 0 are

isolated and factorized into an IR-singular “transition function”, to be identified with the

MS gluon density g(MS)(t).

The important point characterizing the MS-scheme is the factorization of ε-poles in

the form

g(MS)(t) = exp

{∫ t

−∞
dτ γ(MS)

(
a(τ), b

)}
= exp

{
1

ε

∫ a(t)

0

da

a(1 − aB)
γ(MS)(a, b)

}
, (4.25)

where the MS anomalous dimension function γ(MS) is required to be ε-independent. The

first integral in eq. (4.25), which is singular for ε→ 0 because of its IR lower bound, defines

the MS anomalous dimension. The second integral is obtained by changing integration

variable according to eq. (2.10), and is more suitable for comparison with perturbative

calculations. If eq. (4.25) contains all IR singularities, the integrated gluon density (4.18)

of the collinear model can be decomposed in the product

gε,b(t) = Rε
(
a(t), b

)
exp

{
1

ε

∫ a(t)

0

da

a(1 − aB)
γ(MS)(a, b)

}
, (4.26)

where the coefficient function R is regular at ε = 0.

The above expression suggests a method for extracting the MS anomalous dimension.

One observes that the integrand in the exponent is singular at B = 1/a. On the other hand,

for B → 1/a(t), no singularity occurs in the off-shell functions fε,b(t, t0) and gε,b(t, t0). This

signals that such singularity in the on-shell limit is connected with the infinite evolution

of τ from t to t0 = −∞, and therefore it affects only the exponential factor, while no such

singularity is expected in the coefficient function R. Therefore, if we take the logarithmic

derivative of g with respect to a(t) and subsequently the limit B → 1/a(t) from below, we

obtain (at ≡ a(t)):

lim
B→1/at

(1 − atB)
∂log g

∂at
= lim

B→1/at

(1 − atB)

[
∂atR

R
+
γ(MS)(at, Bε/ω)

εat(1 − atB)

]
=
γ(MS)(at, ε/atω)

εat
.

(4.27)

Since the limit can be computed at any a(t) and ε, the above formula enables us to deduce

the full functional dependence of γ(MS) on both a and b. In this model, from eq. (4.18) we
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get

∂ log g

∂at
=

∂ζ

∂at

∂ log g

∂ζ
=

−B
(1 − atB)2




1 − v

ζ
− 1

ζ2

(2 − u)(v − 1)

v − u+ 1

F2 1

(
3 − u , v

v−u+2

∣∣∣∣∣
1

ζ

)

F2 1

(
2 − u , v − 1

v−u+1

∣∣∣∣∣
1

ζ

)



,

(4.28)

where eq. (4.8) and the differentiation formula for hypergeometric functions [13](15.2.1)

have been used. By performing the limit B → 1/at, which implies 1/ζ ≈ atB − 1 → 0, the

second term within square brackets does not contribute, and we end up with the simple

expression

γ(MS)(at, b) = εat lim
B→1/at

(1 − atB)
∂ log g

∂at

∣∣∣∣
ε=atbω

= ε(1 − v)|B=1/at ,ε=atbω =
1 −

√
1 − 4at
2

,

(4.29)

which coincides with its fixed coupling (b = 0) counterpart computed in eqs. (3.23)

and (3.39). This is a non-trivial result, since it shows that the ε-independent kernel (2.8)

provides a b-independent MS anomalous dimension, according to eq. (4.24).

Actually, it is not difficult to extend the collinear model to ε-dependent kernels and

check eq. (4.24) in situations where γ(MS) is explicitly b-dependent. For instance, by con-

sidering an ε-dependent kernel

Kcoll(τ, ε) = Ξ(ε)[Θ(−τ)eξ(ε)τ + Θ(τ)] , χ(γ, ε) = Ξ(ε)

(
1

γ
+

1

ξ(ε) − γ

)
, (4.30)

where Ξ and ξ are regular functions of ε, one obtains the same type of differential equation

and hypergeometric solutions. Analogous expressions hold for the gluon density, with the

replacements A→ AΞ, B → B/Ξ and with new parameters

u, v ≡ 1 − ηξ

2

(
1 ±

√
1 − 4Ξ

Bξ

)
, w ≡ 1 − ξη . (4.31)

The MS anomalous dimension is then straightforwardly obtained (cf. eq. (4.29)):

γ(MS)(at, b) = ε(1 − v)|B=1/at ; ε=atbω = ξ(atbω)
1 −

√
1 − 4at Ξ(atbω)/ξ(atbω)

2
. (4.32)

On the other hand, the solution γ̄(at, ε) of the implicit equation 1 = atχ(γ̄, ε) (satisfying

the perturbative condition γ̄(0, ε) = 0) is given by

γ̄(at, ε) = ξ(ε)
1 −

√
1 − 4at Ξ(ε)/ξ(ε)

2
= ε(1 − v)|B=1/at

(4.33)

and exactly reproduces the anomalous dimension in eq. (4.32) when substituting ε→ atbω.

Note in particular that the MS anomalous dimension retains the “hard-Pomeron”

branch-cut singularity, where eq. (4.24) cannot be solved for γ(MS). For an ε-dependent

kernel, the branch point is at most shifted by the running coupling corrections.
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4.4.2 Q0-scheme

The Q0-scheme gluon is defined by the ε → 0 limit at fixed b of the off-shell b-dependent

integrated density (4.16), analogously to the frozen-coupling definition in eq. (3.20). In

this limit, B → +∞ and we enter the regime R3, in which the variable ζ is positive.

Therefore, we must extend the expression (4.16) of the integrated density from R2 to R3.

At the separation point B = 1/a, however, the running coupling assumes a constant value

a(t) = a, whereas the parameter A (eq. (2.11)) and the variable ζ diverge. In order to avoid

the singular point B = 1/a, we can change regime by means of an analytic continuation

to complex B of the equations (4.11)–(4.18) obtained in R2. According to whether R3 is

reached from the upper or lower half of the BC = B ± i0 complex plane, (−ζ)p → ζpe±iπp

acquires a phase of different sign. This translates into a discontinuity of the analytic

continuation of g at values of B > 1/a. For t > t0 we obtain

gε,b(t, t0) =
η2

B(1 − v)(u − v)
ζ1−v F2 1

(
2 − u , v − 1

v − u+ 1

∣∣∣∣∣
1

ζ

)
gI(t0) , (t > t0 , B > 1/a)

gI(t0) =(1 − ζ0)

[
ζv−2
0 F2 1

(
u , 2 − v

u− v + 1

∣∣∣∣∣
1

ζ0

)
(4.34)

−e±iπ(u−v) Γ(2 − u)Γ(1 − u)Γ(u− v + 1)

Γ(2 − v)Γ(1 − v)Γ(v − u+ 1)
ζu−2
0 F2 1

(
2 − u , v

v − u+ 1

∣∣∣∣∣
1

ζ0

)]
.

From this equation we learn that:

• the analytic continuation of the gluon density is still factorized in its t and t0 depen-

dence with the same UV (t-dependent) factor as in R2 ;

• the discontinuity affects only the IR factor gI(t0), because of the phase e±iπ(u−v) in

the second term;

• the Landau pole shows up in the well known branch point of the hypergeometric

function at ζ = eε(t−tΛ) = 1, in both UV and IR parts.

Our main goal, though, is to obtain the anomalous dimension, which is known to be

independent from the IR properties of the theory, provided the “hard scale” t is large

enough. In other words, the effective anomalous dimension

γeff(t, t0) ≡
ġε,b(t, t0)

gε,b(t, t0)
=

1 − v

η

F2 1

(
2 − u , v

v − u+ 1

∣∣∣∣∣
1

ζ

)

F2 1

(
2 − u , v − 1

v − u+ 1

∣∣∣∣∣
1

ζ

) , (ġ ≡ ∂tg) (4.35)

is expected to depend only on a(t) for t ≫ t0, tΛ, where tΛ eventually represents a cutoff

that regularizes the Landau pole and gives mathematical meaning to the gluon density g.

In this model, thanks to the factorization property of g, the effective anomalous dimension

is independent of t0, hence independent on the details of the analytic continuations to
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R3, and needs not a regulator of the Landau pole. As a result, the Q0-scheme anomalous

dimension reads

γ(Q0)
(
a(t), b

)
= lim

ε→0
γeff(t) = a(t)

U(−1/bω, 0, T )

U(−1/bω, 1, T )
, T ≡ t+

1

abω
(4.36)

which is indeed a function of the four-dimensional running coupling a(t) = a/(1 + abωt) ≡
1/bωT and of bω only. Let me stress that the expression above resums the running coupling

corrections of the Q0-scheme anomalous dimension to all orders in b. The Q0-anomalous

dimension (4.36) can be directly obtained in D = 4 dimensions as well, by solving the

differential equation (4.1) at ε = 0.

The most important feature of the expression (4.36) is the absence of the “hard-

Pomeron” singularity at a(t) = 1/χmin, at variance with the frozen-coupling anomalous

dimension (3.21) and with the running-coupling MS one (4.29). With running coupling,

the singularities of γ(Q0) are simple poles, due to the zeroes of the integrated gluon at low t.

It can be shown that such zeroes are located at values of a(t) larger than the fixed-coupling

singularity at a = 1/4, and consequently the running-coupling anomalous dimension is

regular in a larger t-domain with respect to the fixed-coupling case. This shows that the

“hard-Pomeron” singularity is an artefact of the BFKL expansion, which can be eliminated

by choosing a “physical” facorization scheme, such as the Q0-scheme.

An important check of eq. (4.36) comes from the γ-representation [14]

fε,b(t) ∝
∫

dγ

2πi
eγt−

X(γ)
bω =

∫
dγ

2πi
eγtγ−1/bω(1−γ)1/bω , X(γ) ≡

∫
χ(γ) dγ = log

γ

1 − γ
(4.37)

yielding, in the collinear model, the confluent hypergeometric function a(t)U(−1/bω, 0, T )

— apart from a t-independent factor — as first observed by M. Taiuti in her degree the-

sis [15]. From the representation (4.37), by means of the saddle-point method, one can

obtain the running coupling corrections at any given order in bω. In the b → 0 limit, the

Q0 anomalous dimension (4.36) reduces to the frozen coupling value γ̄
(
a(t)

)
of eq. (3.21),

and coincides with the MS anomalous dimension (4.29). Starting from O (b), the two fac-

torization schemes provide different results. In particular, this collinear model predicts

a b-independent MS-scheme anomalous dimension, whereas the Q0-scheme contains non-

vanishing corrections, which agree with the b-expansion in D = 4 dimensions.

4.5 Solution in γ space

In this section I show that the γ-representation (3.27) is valid also at b 6= 0 and similar

conclusions as for the b = 0 case can be drawn in the asymptotic small-ε expansion of the

gluon density.

The Mellin transform f̃ε,b(γ, t0) of the unintegrated gluon density, defined in eq. (3.30a),

exists in the strip 1/2 − ℜ
√

1/4 − 1/B < ℜγ < 1 + ε for all values of ε and B. However,

the structure of the singularities of f̃(γ) is different from that in eq. (3.30), since now f̃ (+)

has two infinite series of poles at γ = (1 ±
√

1 − 4/B)/2 − εn : n ∈ N. In particular, when

B < 4 (regime R1 ), these poles are located off the real axis, as shown in figure 7.
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Figure 7: Singularity structure of the Mellin transform f̃ε(γ, t0) in the complex γ-plane. Symbols

as in figure 3.

Let me focus on the gluon density for t > t0. By following the same steps as in

section 3.4, the function f̃ (+)(γ) can be decomposed in the sum of a product of elementary

and gamma functions plus hypergeometric functions of type F3 2; by then deforming the

integration contour C into C′ so as to cross the real axis at γ0 < ε (while leaving the new

complex poles to the left), the F3 2 functions do not contribute to fε,b(t > t0). In the

on-shell limit t0 → −∞ we are left with

fε,b(t) =
πη

BΓ(η)Γ(u)Γ(v)

∫

C

dγ

2πi
eγt(AB)ηγ Γ(u− 1 + ηγ)Γ(v − 1 + ηγ)

× Γ
(
1 + η(1 − γ)

)

Γ(ηγ)
[− cot(πηγ) + ℜ cot(πu)] , (4.38)

where the real part in the last term descends from the real part used in eq. (4.22). With

some trigonometric identities it is not difficult to prove that, for B < 4,

ℜ cot(πu) =
1

2
[cot(πu) + cot(πv)]

=
sin(πη)

cos(πη) − cosh
(
πη
√

4
B − 1

)
η→∞∼ exp

[
−πη

√
4
B − 1

]
. (4.39)

When computing the inverse Mellin transform (4.38) along the deformed path C′ in the

large-η (fixed B) limit, the term with − cot(πηγ) → ±i sign(ℑγ) becomes discontinuous on

the real axis and its main contribution is provided by the integral of such discontinuity in

the real interval γ ∈]0, 1/2[. On the other hand, the term proportional to ℜ cot(πu) does

not develop any discontinuity, hence does not contribute in the parts B-C-D of the contour;

furthermore in the remaining parts A and E it is exponentially suppressed with respect

to the other term ∝ cot(πηγ), as indicated in eq. (4.39), and therefore can be completely

neglected. In conclusion

fε,b(t) ≈
η

BΓ(η)Γ(u)Γ(v)

∫ 1
2

0
dγ eγt(AB)ηγ Γ(u− 1 + ηγ)Γ(v − 1 + ηγ)

Γ
(
1 + η(1 − γ)

)

Γ(ηγ)
.

(4.40)

The main difference between eq. (4.40) and its b = 0 counterpart eq. (3.37) is the

presence of the two additional u, v-dependent gamma-functions. The latter modify the
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analytic structure of the Mellin transform f̃(γ) away from the real axis, but do not affect the

mechanism generating the discontinuity in the ε→ 0 limit. It is an easy exercise to check

that in the b 6= 0 case the integrand of eq. (4.38) (without eγt) and its discontinuity (4.40)

obey the homogeneous difference equation

f̃ε,b(γ + ε) = Aχ(γ,B)f̃ε,b(γ) . (4.41)

Finally, in the regime R1 we can verify the validity of the Laurent-series representa-

tion (3.29) also for the running coupling case. In fact, by using in eq. (4.40) the asymptotic

expansion of the gamma-functions in terms of Bernoulli numbers, after some calculation

one indeed reproduces eq. (3.29) with

Ω =

√
Aη

2π

ηη+1/2e−η

Γ(η + 1)

Γ(η/B)

(η/B)η/b−1/2e−η/B
, L(γ,B) = log[Aχ(γ,B)] . (4.42)

In the η → +∞ limit, Ω →
√
A/2πε and

fε,b(t) ≈
1√
2πε

∫
dγ eγt

1√
χ(γ,B)

exp

{
1

ε

∫ γ

0
L(γ′, B) dγ′ +

ε

12
L′(γ,B) + O

(
ε2
)}

(4.43)

agrees with eq. [1](4.1).

To conclude this section, I have shown that the analysis of the collinear model can

be carried out explicitly in the presence of running coupling, and provides analytic results

for the anomalous dimensions in both MS- and Q0-scheme, which agree with the general

results of the literature and in particular with the relations provided by sections 3 and 4

of ref. [1].

5. Conclusions

In this article I have considered a simplified version of the integral equation that determines

the gluon Green’s function in high-energy QCD in arbitrary space-time dimensions D =

4+2ε. The kernel of the integral equation agrees with the true leading-log x BFKL kernel in

the collinear limit, where the transverse momenta of the gluons are strongly ordered. This

model has no phenomenological ambition, but embodies most of the qualitative features

of the real theory, e.g., the kinematical symmetry in the gluon exchange, the leading-twist

behaviour of the gluon density, the pattern of IR singularities and the running coupling. It is

therefore a useful tool to check and better understand general results of the QCD literature.

In fact, this model was already considered in D = 4 dimensions [9] for clarifying the

transition mechanism between the perturbative, non-Regge regime and the strong coupling

Pomeron behaviour.

In the present formulation I have explicitly determined the gluon densities and their

anomalous dimensions in two different factorization schemes: the MS-scheme, based on

dimensional regularization, and the Q0-scheme, based on an initial off-shell gluon. The

original motivation for this analysis stems from a previous work by M.Ciafaloni and my-

self [1] where we introduced a new method for solving the off-dimensional BFKL equation
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and for performing the minimal subtraction of the collinear singularities. The rather formal

expressions we obtained and some sensible but unproven assumptions we made, could be

strongly supported by an explicit non-trivial example where they are shown to be valid.

This analysis attains this object. In fact, in 4 + 2ε dimensions, the master integral

equation is solvable in terms of Bessel functions (with frozen coupling) and hypergeomet-

ric functions (in the running coupling case). The qualitative behaviour of the solutions

is studied in some detail. In particular, for b < ε/ᾱs the gluon density oscillates at large

momenta, because the coupling runs to large values in the UV region, causing the anoma-

lous dimension to become complex. On the contrary, the asymptotic-free regime entails an

exponential behaviour governed by real and positive anomalous dimensions. The results

obtained here are then often compared with series and integral representations of ref. [1],

showing their correctness and their domain of validity. In particular, it is clarified the

mechanism by which the integral representation of the solution of the master equation —

a real analytic function of the anomalous dimension variable γ integrated along a contour

parallel to the imaginary axis — is evaluated by a saddle point integral along the real axis.

I also show that the iterative/perturbative solution to the master equation agrees with the

exact one, at least up to the order n < 1/ε; genuine non-perturbative contributions of order

ᾱ
1/ε
s are found, but are exponentially suppressed in the ε → 0 limit and do not affect the

physical perturbative results.

Among the most important results there is the confirmation of the formula (4.24)

determining the MS anomalous dimension with running coupling from the ε-dependence of

the kernel, which in general was proven only up to O
(
b2
)

corrections [1]. In addition, the

Q0 anomalous dimension with running coupling is not affected by the branch-cut “hard-

Pomeron” singularity; the latter is replaced by a series of simple poles shifted towards the

infra-red which correspond to the zeroes of the integrated gluon.

On the whole, this model represents a useful tool for studying the mathematical prop-

erties and the qualitative features of the off-dimensional BFKL equation, even with run-

ning coupling. It supports the validity of the procedure [1] for determining anomalous

dimensions in subleading approximation, and encourages its application for extracting the

leading-twist anomalous dimension at full NLx level.
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A. Integrated gluon density

In this appendix I compute the off-shell integrated gluon density defined in eq. (3.18), both

at fixed coupling and with running coupling.
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A.1 Integrated gluon with frozen coupling

At fixed coupling, it is convenient to use the z-variable introduced in eq. (3.2):

gε(t, t0) = 1 + 2η

∫ z

0
xη+1F(x, z0) dx , (A.1)

where the unintegrated density F is given in eq. (3.12). For t < t0 we have [13](11.3.20)

gε(t < t0) = 1 + 2η
−πYη(z0)

4ηζη0

∫ z

0
xη+1Jη(x) = 1 − π

2

(
z

z0

)η
Jη+1(z)Yη(z0) . (A.2)

For t > t0, the integral in eq. (A.1) is conveniently split into 2 pieces

2η

∫ z

0
xη+1F(x, z0) dx = − π

2zη0

[
Yη(z0)

∫ z0

0
xη+1Jη(x) dx+ Jη(z0)

∫ z

z0

xη+1Yη(x) dx

]

= − π

2zη0

[
zη+1
0 {Yη(z0)Jη+1(z0) − Jη(z0)Yη+1(z0)}

+ Jη(z0)z
η+1Yη+1(z)

]
. (A.3)

The terms in curly brackets are the opposite of the Wronskian (3.11), [13](9.1.16)

JηYη+1 − YηJη+1 = −W =
2

πz0
(A.4)

and combined with the prefactors yield a −1 which cancels the 1+ in the definition (A.1)

of the gluon. The final result reads

gε(t > t0) = −πz
2

(
z

z0

)η
Jη(z0)Yη+1(z) (A.5)

and has the remarkable property of being factorized in the z- and z0-dependence.

A.2 ε→ 0 limit

In the ε → 0 limit of eq. (A.5), both the order and the argument of the Bessel functions

grow linearly with η → +∞. By writing the argument in the form

z = ηs , s ≡ 2
√
aeεt/2 → 2

√
a , (A.6)

using the asymptotic expansions [13](9.3.6) of the Bessel function J in terms of Airy func-

tions

Jη(ηs) ≈
(

4ζ

1 − s2

) 1
4

η−
1
3 Ai(η

2
3 ζ) , (η → +∞) (A.7)

2

3
ζ

3
2 ≡ I(s) ≡

∫ 1

s

√
1 − u2

u
du

=

∫ aeεt

1
4

−
√

1 − 4a

2

da

a

= log
1 +

√
1 − s2

s
−
√

1 − s2 , (A.8)
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and exploiting the asymptotic expansion [13](10.4.59) of the Airy function

Ai(x) ≈ 1

2
√
π
x−

1
4 exp

(
− 2

3
x

3
2

)
, (x→ +∞) , (A.9)

one obtains

Jη(z0) ≈
exp

[
−η I(2√aeεt0/2)

]
√

2πη(1 − 4a)
1
4

, (A.10)

where I is the integral defined in eq. (A.8). In the same way, by using the asymptotic

expansion [13](9.3.6) of the Bessel function Y in terms of the Airy function Bi(η
2
3 ζ) and

the large-η expansion of the latter [13](10.4.63), one obtains

Yη(ηs) ≈ − 2 exp[η I(s)]
√

2πη(1 − s2)
1
4

. (A.11)

Before applying the above formulas to the integrated gluon, we can immediately derive

the ε→ 0 limit of the unintegrated gluon (cf. eq. (3.12)) for t > t0. In fact

fε(t > t0) = −π
η

(z
2

)2
(
z

z0

)η
Yη(z)Jη(z0)

≈ a e
t−t0

2

(1 − 4a)
1
2

exp
{
η
[
I(2

√
aeεt/2) − I(2

√
aeεt0/2)

]}
. (A.12)

The difference of the integrals in the exponential yields

I(2
√
aeεt/2)−I(2

√
aeεt0/2) = −1

ε

∫ aeεt

aeεt0

√
1 − 4a

2

da

a

ε→0−−−→ −
√

1 − 4a

2
(t−t0) , (A.13)

hence

f(t > t0) =
a√

1 − 4a
exp

[
1 −

√
1 − 4a

2
(t− t0)

]
=

a√
1 − 4a

exp [γ̄(a)(t− t0)] , (A.14)

where γ̄(a) is the saddle-point value (3.39) at ε = 0.

As for the integrated gluon density gε, comparing eq. (A.5) with eq. (A.12) we find

fε(t > t0)

gε(t > t0)
=

z

2η

Yη(z)

Yη+1(z)
, (A.15)

which represents the ε-dependent effective anomalous dimension. We need the asymptotic

behaviour of

Yη+1(ηs) = Yη̃
(
(η̃ − 1)s

)
= Yη̃(η̃s̃) ≈ − 2 exp[η̃ I(s̃)]

√
2πη(1 − s̃2)

1
4

, (A.16)

where η̃ ≡ η + 1 and s̃ ≡ s(1 − 1/η̃) ≈ s(1 − ε). From

η̃ I(s̃) ≈ (η + 1)

∫ 1

s−εs

√
1 − u2

u
du = (η + 1)I(s) +

√
1 − s2 = ηI(s) + log

1 +
√

1 − s2

s
(A.17)
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and s→ 2
√
a, we obtain a finite limit for the ratio (A.15)

fε
gε

≈
√
a exp[η I(s)−η̃ I(s̃)] ε→0−−−→

√
a s

1 +
√

1 − s2

∣∣∣∣
s=2

√
a

=
1 −

√
1 − 4a

2
= γ̄(a) (A.18)

which coincides with the saddle-point γ̄(a) at ε = 0. The explicit expression for the off-

shell integrated gluon density at ε = 0 — namely the gluon in the Q0-scheme — is finally

obtained dividing eq. (A.14) by γ̄(a), whence eq. (3.20).

In the on-shell case, where the t0 → −∞ limit is performed at non-vanishing ε, the

integrated gluon at large-η behaves like

gε(t) = − π

Γ(η + 1)

(z
2

)η+1
Yη+1(z) ≈

a

γ̄(a)(1 − 4a)
1
4

exp

{
t

2
+ η

[
1 +

log a

2
+ I(s)

]}

= N(a) exp

{
η

[
1 +

∫ aeεt

1

da

2a
−
∫ aeεt

1
4

√
1 − 4a

2a
da

]}
. (A.19)

where I used the Stirling approximation for gamma-functions and eq. (A.11) in the asymp-

totic expansion, and an integral representation for the exponent, together with the defini-

tion (3.25) for N, in the last equality. It is possible to shift the lower limits of integrations to

zero, since the two logarithmic singularities at a = 0 cancel in the sum of the two integrals.

The final result is

gε(t) ≈ N(a) exp

{
1

ε

∫ aeεt

0

1 −
√

1 − 4a

2

da

a

}
. (A.20)

Eq. (A.20) demonstrates the factorization of the collinear singularities, and identifies the

ε-finite coefficient factor R ≡ N(a) and the MS gluon density, according to eq. (3.22).

A.3 Integrated gluon with running coupling

In the running coupling case, it is convenient to use the ζ-variable introduced in eq. (4.8).

The interesting kinematical region is at t > t0, which in the regimes R1 and R2 where

aB < 1 corresponds to ζ < ζ0 < 0:

gε,b(t > t0) = 1 − η

[∫ ζ0

0
F(x, z0) dx+

∫ ζ

ζ0

F(x, z0) dx

]
, (A.21)

where the unintegrated density F is given in eq. (4.15).

The first integral involves an integral of hypergeometric function of type [13](15.2.4)

∫
xc−2 F2 1

(
a , b

c− 1

∣∣∣∣∣x
)

dx =
xc−1

c− 1
F2 1

(
a , b

c

∣∣∣∣∣x
)
,





a = 2 − u

b = 2 − v

c = 3 − w

, (A.22)

where the condition of integrability at x = 0 is guaranteed by c− 2 = η > 0. The second

integral in eq. (A.21), after the position y = 1/x, involves an integral of type [13](15.2.3)

∫
ya−1 F2 1

(
a+ 1 , b

c

∣∣∣∣∣ y
)

=
ya

a
F2 1

(
a , b

c

∣∣∣∣∣ y
)
,





a = v − 1

b = 2 − u

c = v − u+ 1

. (A.23)
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Summing the various contributions yields

gε,b(t > t0) = 1−η(1 − ζ0)

B

Γ(2 − u)Γ(1 − u)

Γ(1 − w)Γ(v − u+ 1)
(A.24)

×
{

(−ζ0)1−v
[

1

w − 2
F2 1

(
2 − u , 2 − v

3 − w

∣∣∣∣∣ ζ0

)
F2 1

(
2 − u , v

v − u+ 1

∣∣∣∣∣
1

ζ0

)

− 1

v − 1
F2 1

(
2 − u , 2 − v

2 − w

∣∣∣∣∣ ζ0

)
F2 1

(
2 − u , v − 1

v − u+ 1

∣∣∣∣∣
1

ζ0

)]

+
1

v − 1
F2 1

(
2 − u , 2 − v

2 − w

∣∣∣∣∣ ζ0

)
(−ζ)1−v F2 1

(
2 − u , v − 1

v − u+ 1

∣∣∣∣∣
1

ζ

)}
.

The hard task is to prove that the ζ-independent terms, namely those stemming from the

square brackets in eq. (A.24), combine themselves in such a way to give a −1 that cancels

the 1 at the beginning of the r.h.s. . The method is to use relations between contiguous

hypergeometric functions — differing by one unit in some of their (a, b, c) parameters —

and their derivatives.

By introducing the short-hand notation

F1 ≡ F2 1

(
2 − u , 2 − v

2 − w

∣∣∣∣∣ ζ0

)
, F2 ≡ F2 1

(
2 − u , v

v − u+ 1

∣∣∣∣∣
1

ζ0

)
(A.25)

and exploiting the relations [13](15.2.6) and [13](15.2.5), one gets

F2 1

(
2 − u , 2 − v

3 − w

∣∣∣∣∣ ζ0

)
=

2 − w

(1 − u)(1 − v)
[(1 − ζ0)F

′
1 − F1] (A.26)

F2 1

(
2 − u , v − 1

v − u+ 1

∣∣∣∣∣
1

ζ0

)
=

(
1 − 2 − u

ζ0(1 − u)

)
F2 +

ζ0 − 1

ζ2
0 (1 − u)

F ′
2 , (A.27)

whence

[· · · ](A.24) =
1

(1 − u)(1 − v)

{
(2 − u)

(
1 − 1

ζ0

)
F1F2 + (ζ0 − 1)

(
F ′

1F2 +
1

ζ2
0

F1F
′
2

)}
.

(A.28)

In order to find a relation among the Fj ’s and their derivatives, I exploit the Wron-

skian (4.14):

W [FU ,FI ](ζ0)
cU

= (−ζ0)1−v−w
{(

1 + v −w

ζ0

)
F1F2 + F ′

1F2 +
1

ζ2
0

F1F
′
2

}
. (A.29)

The combination F ′
1F2 +F1F

′
2/ζ

2
0 entering eq. (A.28) can thus be expressed in terms of the

product F1F2. As a result, the terms with F1F2 cancel out and all gamma-functions simpli-

fies. Finally, by substituting the explicit expressions (4.11) of u, v,w, it is straightforward

to compute the sum of the ζ-independent terms in eq. (A.24) and to obtain −1, as I stated

previously. The remaining ζ-dependent term provides the factorized expression (4.16) for

the integrated gluon density.
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